Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 147
1.
Sci Rep ; 14(1): 7726, 2024 04 02.
Article En | MEDLINE | ID: mdl-38565619

Decidualization can be induced by culturing human endometrial stromal cells (ESCs) with several decidualization stimuli, such as cAMP, medroxyprogesterone acetate (MPA) or Estradiol (E2). However, it has been unclear how decidualized cells induced by different stimuli are different. We compared transcriptomes and cellular functions of decidualized ESCs induced by different stimuli (MPA, E2 + MPA, cAMP, and cAMP + MPA). We also investigated which decidualization stimulus induces a closer in vivo decidualization. Differentially expressed genes (DEGs) and altered cellular functions by each decidualization stimuli were identified by RNA-sequence and gene-ontology analysis. DEGs was about two times higher for stimuli that use cAMP (cAMP and cAMP + MPA) than for stimuli that did not use cAMP (MPA and E2 + MPA). cAMP-using stimuli altered the cellular functions including angiogenesis, inflammation, immune system, and embryo implantation whereas MPA-using stimuli (MPA, E2 + MPA, and cAMP + MPA) altered the cellular functions associated with insulin signaling. A public single-cell RNA-sequence data of the human endometrium was utilized to analyze in vivo decidualization. The altered cellular functions by in vivo decidualization were close to those observed by cAMP + MPA-induced decidualization. In conclusion, decidualized cells induced by different stimuli have different transcriptome and cellular functions. cAMP + MPA may induce a decidualization most closely to in vivo decidualization.


Endometrium , Medroxyprogesterone Acetate , Female , Humans , Cells, Cultured , Endometrium/metabolism , Medroxyprogesterone Acetate/pharmacology , Stromal Cells/metabolism , Gene Expression , RNA/metabolism , Decidua/metabolism
2.
Reprod Med Biol ; 23(1): e12572, 2024.
Article En | MEDLINE | ID: mdl-38571514

Purpose: To investigate whether long noncoding RNAs (lncRNAs) are involved in the development or malignant behavior of ovarian high-grade serous carcinoma (HGSC), we attempted to identify lncRNAs specific to HGSC. Methods: Total RNAs were isolated from HGSC, normal ovarian, and fallopian tube tissue samples and were subjected to a PCR array that can analyze 84 cancer-associated lncRNAs. The lncRNAs that were upregulated and downregulated in HGSC in comparison to multiple samples of normal ovary and fallopian tube were validated by real-time RT-PCR. To infer the function, ovarian cancer cell lines that overexpress the identified lncRNAs were established, and the activation of cell proliferation, migration, and invasion was analyzed. Results: Eleven lncRNAs (ACTA2-AS1, ADAMTS9-AS2, CBR3-AS1, HAND2-AS1, IPW, LINC00312, LINC00887, MEG3, NBR2, TSIX, and XIST) were downregulated in HGSC samples. We established the cell lines that overexpress ADAMTS9-AS2, CBR3-AS1, or NBR2. In cell lines overexpressing ADAMTS9-AS2, cell proliferation was suppressed, but migration and invasion were promoted. In cell lines overexpressing CBR3-AS1 or NBR2, cell migration tended to be promoted, although cell proliferation and invasion were unchanged. Conclusion: We identified eleven lncRNAs that were specifically downregulated in HGSC. Of these, CBR3-AS1, NBR2, and ADAMTS9-AS2 had unique functions in the malignant behaviors of HGSC.

4.
Reprod Med Biol ; 23(1): e12564, 2024.
Article En | MEDLINE | ID: mdl-38361634

Purpose: We investigated the interactions between mural granulosa cells (MGCs) and cumulus granulosa cells (CGCs) during ovulation after the LH surge. Methods: We performed clustering, pseudotime, and interactome analyses utilizing reported single-cell RNA sequencing data of mouse ovary at 6 h after eCG-hCG injection. Results: Clustering analysis classified granulosa cells into two distinct populations, MGCs and CGCs. Pseudotime analysis divided granulosa cells into before and after the LH surge, and further divided them into two branches, the ovulatory MGCs and the ovulatory CGCs. Interactome analysis was performed to identify the interactions between MGCs and CGCs. Twenty-six interactions were acting from CGCs toward MGCs, involving ovulation and steroidogenesis. Thirty-six interactions were acting from MGCs toward CGCs, involving hyaluronan synthesis. There were 25 bidirectional interactions, involving the EGFR pathway. In addition, we found three novel interactions: Ephrins-Ephs pathway and Wnt-Lrp6 pathway from CGCs to MGCs, associated with steroidogenesis and lipid transport, respectively, and TGF-ß-TGFBR1 pathway from MGCs to CGCs, associated with hyaluronan synthesis. Conclusions: MGCs and CGCs interact with each other in the preovulatory follicle after the LH surge, and their interactions have roles in corpus luteum formation, oocyte maturation, and follicle rupture.

5.
Obstet Gynecol ; 143(3): 358-365, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38061038

OBJECTIVE: To establish prediction models for the diagnosis of the subtypes of uterine leiomyomas by machine learning using magnetic resonance imaging (MRI) data. METHODS: This is a prospective observational study. Ninety uterine leiomyoma samples were obtained from 51 patients who underwent surgery for uterine leiomyomas. Seventy-one samples (49 mediator complex subunit 12 [ MED12 ] mutation-positive and 22 MED12 mutation-negative leiomyomas) were assigned to the primary data set to establish prediction models. Nineteen samples (13 MED12 mutation-positive and 6 MED12 mutation-negative leiomyomas) were assigned to the unknown testing data set to validate the prediction model utility. The tumor signal intensity was quantified by seven MRI sequences (T2-weighted imaging, apparent diffusion coefficient, magnetic resonance elastography, T1 mapping, magnetization transfer contrast, T2* blood oxygenation level dependent, and arterial spin labeling) that can estimate the collagen and water contents of uterine leiomyomas. After surgery, the MED12 mutations were genotyped. These results were used to establish prediction models based on machine learning by applying support vector classification and logistic regression for the diagnosis of uterine leiomyoma subtypes. The performance of the prediction models was evaluated by cross-validation within the primary data set and then finally evaluated by external validation using the unknown testing data set. RESULTS: The signal intensities of five MRI sequences (T2-weighted imaging, apparent diffusion coefficient, T1 mapping, magnetization transfer contrast, and T2* blood oxygenation level dependent) differed significantly between the subtypes. In cross-validation within the primary data set, both machine learning models (support vector classification and logistic regression) based on the five MRI sequences were highly predictive of the subtypes (area under the curve [AUC] 0.974 and 0.988, respectively). External validation with the unknown testing data set confirmed that both models were able to predict the subtypes for all samples (AUC 1.000, 100.0% accuracy). Our prediction models with T2-weighted imaging alone also showed high accuracy to discriminate the uterine leiomyoma subtypes. CONCLUSION: We established noninvasive prediction models for the diagnosis of the subtypes of uterine leiomyomas by machine learning using MRI data.


Leiomyoma , Uterine Neoplasms , Female , Humans , Uterine Neoplasms/diagnostic imaging , Uterine Neoplasms/genetics , Leiomyoma/diagnostic imaging , Magnetic Resonance Imaging/methods , Diffusion Magnetic Resonance Imaging/methods , Mutation
6.
Reprod Med Biol ; 22(1): e12548, 2023.
Article En | MEDLINE | ID: mdl-38107653

Purpose: To test the theory that invaginated ovarian surface epithelium and endometrial implants on the ovary form ovarian endometriomas. Methods: Adhesion sites of ovarian endometrioma on the peritoneum and consecutive ovarian endometrioma cyst wall, called non-adhesion sites, were histologically examined. DNA methylomes of the adhesion sites, non-adhesion sites, and blueberry spots were compared with those of ovary, endometrium, and peritoneum. Results: The non-adhesion sites showed an ovarian surface epithelium-like structure near the adhesion site, which continued to a columnar epithelium-like structure. Calretinin staining was strong in the ovarian surface epithelium-like structure but weak in the columnar epithelium-like structure. Estrogen receptors were absent in the ovarian surface epithelium-like structure, but present in the columnar epithelium-like structure. The adhesion sites had endometrial gland-like structures that expressed estrogen receptors. Analyses of DNA methylomes classified the non-adhesion sites and ovaries into the same group, suggesting that ovarian endometriomas originate from the ovarian surface epithelium. The adhesion sites, blueberry spots and peritoneum were classified in the same group, suggesting that the adhesion sites and blueberry spots originate from the peritoneum. Conclusions: The present results support the invagination theory. Ovarian endometriomas consist of invaginated ovarian surface epithelium with celomic metaplasia and endometrium implants on the peritoneum.

7.
Mol Hum Reprod ; 29(7)2023 Jun 30.
Article En | MEDLINE | ID: mdl-37310913

Human endometrial stromal cells (hESCs) undergo a differentiation process with dramatic changes in cell functions during the menstrual cycle, which is called decidualization. This is an important event for implantation of the embryo and successful pregnancy. Defective decidualization can cause implantation failure, miscarriage, and unexplained infertility. A number of genes are upregulated or downregulated during decidualization. Recent studies have shown that epigenetic mechanisms are involved in the regulation of decidualization-related genes and that histone modifications occur throughout the genome during decidualization. The present review focuses on the involvement of genome-wide histone modifications in dramatic changes in gene expression during decidualization. The main histone modifications are the increases of H3K27ac and H3K4me3, which activate transcription. C/EBPß works as a pioneer factor throughout the genome by recruiting p300. This is the main cause of the genome-wide acetylation of H3K27 during decidualization. Histone modifications were observed in both the proximal promoter and distal enhancer regions. Genome editing experiments show that the distal regions have transcriptional activities, which suggests that decidualization induces the interactions between proximal promoter and distal enhancer regions. Taken together, these findings show that gene regulation during decidualization is closely associated with genome-wide changes of histone modifications. This review provides new insights regarding the cases of implantation failure in terms of decidualization insufficiency owing to epigenetic dysregulation, and may lead to novel treatment options for women with implantation failure.


Decidua , Endometrium , Pregnancy , Humans , Female , Endometrium/metabolism , Decidua/metabolism , Histone Code/genetics , Gene Expression , Stromal Cells/metabolism
8.
Endocr J ; 70(5): 465-472, 2023 May 29.
Article En | MEDLINE | ID: mdl-37081638

Decidualization is a process of differentiation of human endometrial stromal cells (hESCs) accompanied by dramatic changes in cellular functions. This process is critical for embryo implantation and the establishment of pregnancy. Impairment of decidualization of hESCs leads to implantation failure, miscarriage, and unexplained infertility. The present review focuses on the metabolic changes in hESCs during decidualization. One of the changes taking place is in the glucose metabolism. Glucose uptake increases during decidualization because glucose is essential for the decidualization of hESCs. In hESCs, GLUT1 is highly expressed and involved in the increase of glucose uptake during decidualization. The up-regulation of GLUT1 is mediated by an epigenetic mechanism, which is regulated by CCAAT enhancer-binding protein ß (C/EBPß) and Wilms tumor 1 (WT1). Another metabolic change is in the lipid metabolism. Lipid accumulation in hESCs increases during decidualization. This increase is mediated by very low-density lipoprotein receptor (VLDLR). The up-regulation of VLDLR is regulated by WT1. In contrast to glucose, lipid is not essential for decidualization of hESCs. Endometrial cells have been implicated as important sources of nutrition for the embryo. hESCs may increase glucose and lipid storage so that they can supply them to the embryo during the implantation process. Taken together, decidualization is the process accompanied by metabolic changes, which may be associated with successful implantation.


Decidua , Lipid Metabolism , Pregnancy , Female , Humans , Decidua/metabolism , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism , Glucose/metabolism , Endometrium , Stromal Cells/metabolism , Lipids
9.
Nanoscale Adv ; 4(12): 2682-2703, 2022 Jun 14.
Article En | MEDLINE | ID: mdl-36132282

Biomedical imaging using cell labeling is an important technique to visualize cell dynamics in the body. To label cells, thiol-organosilica nanoparticles (thiol-OS) containing fluorescein (thiol-OS/Flu) and rhodamine B (thiol-OS/Rho) were surface-functionalized with polyethyleneimine (PEI) (OS/Flu-PEI and OS/Rho-PEI) with 4 molecular weights (MWs). We hypothesized PEI structures such as brush, bent brush, bent lie-down, and coiled types on the surface depending on MWs based on dynamic light scattering and thermal gravimetric analyses. The labeling efficacy of OS/Flu-PEIs was dependent on the PEI MW and the cell type. A dual-particle administration study using thiol-OS and OS-PEIs revealed differential endosomal sorting of the particles depending on the surface of the NPs. The endosomes in the labeled cells using OS/Flu-PEI and thiol-OS/Rho revealed various patterns of fluorescence termed barcoded endosomes. The cells labeled with OS-PEI in vitro were administrated to mice intraperitoneally after in situ labeling of peritoneal cells using thiol-OS/Rho. The in vitro labeled cells were detected and identified in cell aggregates in vivo seamlessly. The labeled cells with barcoded endosomes were also identified in cell aggregates. Biomedical imaging of in vitro OS-PEI-labeled cells combined with in situ labeled cells showed high potential for observation of cell dynamics.

10.
Int J Mol Sci ; 23(12)2022 Jun 16.
Article En | MEDLINE | ID: mdl-35743171

Melatonin is a promising reagent that can improve assisted reproductive technology (ART) outcomes in infertility patients. However, melatonin is not effective for all infertile patients, and it remains unclear for which patients melatonin would be effective. This study examined the effects of melatonin on ART outcomes and examined its mechanisms. Melatonin increased the fertilization rate in patients whose fertilization rates in the previous cycle were less than 50%, but not in patients whose fertilization rates were more than 50% in the previous cycle. Melatonin increased the blastocyst formation rate in patients whose embryo development rates in the previous cycle were less than 50%, but not in patients whose embryo development rates were more than 50% in the previous cycle. To clarify its mechanisms, transcriptome changes by melatonin treatment in granulosa cells (GCs) of the patients were examined by RNA-sequence. Melatonin treatment altered the transcriptomes of GCs of patients with poor ART outcomes so that they were similar to the transcriptomes of patients with good ART outcomes. The altered genes were associated with the inhibition of cell death and T-cell activity, and the activation of steroidogenesis and angiogenesis. Melatonin treatment was effective for patients with poor fertilization rates and poor embryo development rates in the previous ART cycle. Melatonin alters the GCs transcriptome and, thus, their functions, and this could improve the oocyte quality, leading to good ART outcomes.


Melatonin , Blastocyst , Embryonic Development/genetics , Female , Fertilization , Fertilization in Vitro , Granulosa Cells , Humans , Melatonin/pharmacology , Oocytes , Transcriptome
11.
Sci Rep ; 12(1): 8912, 2022 05 26.
Article En | MEDLINE | ID: mdl-35618793

Somatic mutations in Mediator complex subunit 12 (MED12m) have been reported as a biomarker of uterine fibroids (UFs). However, the role of MED12m is still unclear in the pathogenesis of UFs. Therefore, we investigated the differences in DNA methylome, transcriptome, and histological features between MED12m-positive and -negative UFs. DNA methylomes and transcriptomes were obtained from MED12m-positive and -negative UFs and myometrium, and hierarchically clustered. Differentially expressed genes in comparison with the myometrium and co-expressed genes detected by weighted gene co-expression network analysis were subjected to gene ontology enrichment analyses. The amounts of collagen fibers and the number of blood vessels and smooth muscle cells were histologically evaluated. Hierarchical clustering based on DNA methylation clearly separated the myometrium, MED12m-positive, and MED12m-negative UFs. MED12m-positive UFs had the increased activities of extracellular matrix formation, whereas MED12m-negative UFs had the increased angiogenic activities and smooth muscle cell proliferation. The MED12m-positive and -negative UFs had different DNA methylation, gene expression, and histological features. The MED12m-positive UFs form the tumor with a rich extracellular matrix and poor blood vessels and smooth muscle cells compared to the MED12m-negative UFs, suggesting MED12 mutations affect the tissue composition of UFs.


Epigenome , Leiomyoma , Female , Humans , Leiomyoma/pathology , Mediator Complex/genetics , Mediator Complex/metabolism , Mutation , Myometrium/metabolism , Transcription Factors/metabolism , Transcriptome
12.
J Biol Chem ; 298(5): 101874, 2022 05.
Article En | MEDLINE | ID: mdl-35358514

We previously reported that CCAAT/enhancer-binding protein beta (C/EBPß) is the pioneer factor inducing transcription enhancer mark H3K27 acetylation (H3K27ac) in the promoter and enhancer regions of genes encoding insulin-like growth factor-binding protein-1 (IGFBP-1) and prolactin (PRL) and that this contributes to decidualization of human endometrial stromal cells (ESCs). Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α; PPARGC1A) is a transcriptional coactivator known to regulate H3K27ac. However, although PGC-1α is expressed in ESCs, the potential role of PGC-1α in mediating decidualization is unclear. Here, we investigated the involvement of PGC-1α in the regulation of decidualization. We incubated ESCs with cAMP to induce decidualization and knocked down PPARGC1A to inhibit cAMP-induced expression of IGFBP-1 and PRL. We found cAMP increased the recruitment of PGC-1α and p300 to C/EBPß-binding sites in the promoter and enhancer regions of IGFBP-1 and PRL, corresponding with increases in H3K27ac. Moreover, PGC-1α knockdown inhibited these increases, suggesting PGC-1α forms a histone-modifying complex with C/EBPß and p300 at these regions. To further investigate the regulation of PGC-1α, we focused on C/EBPß upstream of PGC-1α. We found cAMP increased C/EBPß recruitment to the novel enhancer regions of PPARGC1A. Deletion of these enhancers decreased PGC-1α expression, indicating that C/EBPß upregulates PGC-1α expression by binding to novel enhancer regions. In conclusion, PGC-1α is upregulated by C/EBPß recruitment to novel enhancers and contributes to decidualization by forming a histone-modifying complex with C/EBPß and p300, thereby inducing epigenomic changes in the promoters and enhancers of IGFBP-1 and PRL.


Histones , Insulin-Like Growth Factor Binding Protein 1 , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Cyclic AMP/metabolism , Gene Expression Regulation , Histones/genetics , Histones/metabolism , Humans , Insulin-Like Growth Factor Binding Protein 1/genetics , Insulin-Like Growth Factor Binding Protein 1/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Prolactin/genetics , Prolactin/metabolism , Stromal Cells/metabolism
13.
J Biol Chem ; 297(4): 101150, 2021 10.
Article En | MEDLINE | ID: mdl-34478711

Human endometrial stromal cells (ESCs) differentiate into decidual cells by the action of progesterone, which is essential for implantation and maintenance of pregnancy. We previously reported that glucose uptake by human ESCs increases during decidualization and that glucose is indispensable for decidualization. Although glucose transporter 1 (GLUT1) is upregulated during decidualization, it remains unclear whether it is involved in glucose uptake. Here, we attempted to determine the role of GLUT1 during decidualization as well as the factors underlying its upregulation. ESCs were incubated with cAMP to induce decidualization. Knockdown of GLUT1 suppressed cAMP-increased glucose uptake and the expressions of specific markers of decidualization, IGF-binding protein-1 (IGFBP-1), and prolactin (PRL). To investigate the regulation of GLUT1 expression, we focused on CCAAT enhancer-binding protein ß (C/EBPß) and Wilms' tumor 1 (WT1) as the upstream transcription factors regulating GLUT1 expression. Knockdown of either C/EBPß or WT1 suppressed cAMP-increased GLUT1 expression and glucose uptake. cAMP treatment also increased the recruitment of C/EBPß and WT1 to the GLUT1 promoter region. Interestingly, cAMP increased the H3K27 acetylation (H3K27ac) and p300 recruitment in the GLUT1 promoter region. Knockdown of C/EBPß or WT1 inhibited these events, indicating that both C/EBPß and WT1 contribute to the increase of H3K27ac by recruiting p300 to the GLUT1 promoter region during decidualization. These findings indicate that GLUT1 is involved in glucose uptake in ESCs during decidualization, thus facilitating the establishment of pregnancy.


CCAAT-Enhancer-Binding Protein-beta/metabolism , Decidua/metabolism , Epigenesis, Genetic , Glucose Transporter Type 1/biosynthesis , Up-Regulation , WT1 Proteins/metabolism , Adult , CCAAT-Enhancer-Binding Protein-beta/genetics , Female , Glucose Transporter Type 1/genetics , Humans , Middle Aged , Stromal Cells , WT1 Proteins/genetics
14.
Reprod Med Biol ; 20(3): 299-304, 2021 Jul.
Article En | MEDLINE | ID: mdl-34262397

PURPOSE: We investigate the relationships between oocyte developmental capacity and follicular size of its origin in Japanese women: those undergoing conventional IVF (cIVF) and ICSI, respectively. METHODS: A total of 3377 follicles were punctured separately and were classified into three groups (large, medium, and small) by their diameters. A total of 1482 retrieved oocytes were individually cultured and received cIVF or ICSI. The oocytes receiving ICSI were denuded and the number of mature (MII) oocytes was counted. RESULTS: The oocyte retrieval rates and the proportion of MII oocytes were significantly lower in small follicles than in large follicles. Under cIVF, the fertilization rate was significantly lower in oocytes from small follicles than large follicles. Under ICSI, the fertilization rate for MII oocytes was not significantly related to follicular size. Follicular size was not significantly related to the development potential to blastocyst and pregnancy rate for either the cIVF oocytes or the ICSI oocytes. CONCLUSIONS: Although the fertilization rate by cIVF is low in oocytes from small follicles due to the lower proportion of mature oocytes, their development potential is comparable to that of oocytes from larger follicles if they could be fertilized. Under ICSI using mature oocytes, their development potential is not related to follicular size.

15.
J Endocrinol ; 251(1): 15-25, 2021 07 22.
Article En | MEDLINE | ID: mdl-34156346

Women usually experience body weight gain with aging, which can put them at risk for many chronic diseases. Previous studies indicated that melatonin treatment attenuates body weight gain and abdominal fat deposition in several male animals. However, it is unclear whether melatonin affects female animals in the same way. This study investigated whether long-term melatonin treatment can attenuate body weight gain with aging and, if it does, what the mechanism is. Ten-week-old female ICR mice were given melatonin-containing water (100 µg/mL) or only water until 43 weeks. Melatonin treatment significantly attenuated body weight gain at 23 weeks (control; 57.2 ± 2.0 g vs melatonin; 44.4 ± 3.1 g), 33 weeks (control; 65.4 ± 2.6 g vs melatonin; 52.2 ± 4.2 g) and 43 weeks (control; 66.1 ± 3.2 g vs melatonin; 54.4 ± 2.5 g) without decreasing the amount of food intake. Micro-CT analyses showed that melatonin significantly decreased the deposition of visceral and s.c. fat. These results suggested that melatonin attenuates body weight gain by inhibiting abdominal fat deposition. Metabolome analysis of the liver revealed that melatonin treatment induced a drastic change in the metabolome with the downregulation of 149 metabolites, including the metabolites of glucose and amino acids. Citrate, which serves as a source of de novo lipogenesis, was one of the downregulated metabolites. These results show that long-term melatonin treatment induces drastic changes in metabolism and attenuates body weight gain and fat deposition with aging in female mice.


Aging/physiology , Antioxidants/pharmacology , Melatonin/pharmacology , Weight Gain/drug effects , Adiposity/drug effects , Animals , Female , Mice , Mice, Inbred ICR
16.
Endocrinology ; 162(9)2021 09 01.
Article En | MEDLINE | ID: mdl-34171084

The ovulatory luteinizing hormone (LH) surge induces rapid changes of gene expression and cellular functions in granulosa cells (GCs) undergoing luteinization. However, it remains unclear how the changes in genome-wide gene expression are regulated. H3K4me3 histone modifications are involved in the rapid alteration of gene expression. In this study, we investigated genome-wide changes of transcriptome and H3K4me3 status in mouse GCs undergoing luteinization. GCs were obtained from mice treated with equine chorionic gonadotropin (hCG) before, 4 hours, and 12 hours after human chorionic gonadotropin injection. RNA-sequencing identified a number of upregulated and downregulated genes, which could be classified into 8 patterns according to the time-course changes of gene expression. Many genes were transiently upregulated or downregulated at 4 hours after hCG stimulation. Gene Ontology terms associated with these genes included steroidogenesis, ovulation, cumulus-oocyte complex (COC) expansion, angiogenesis, immune system, reactive oxygen species (ROS) metabolism, inflammatory response, metabolism, and autophagy. The cellular functions of DNA repair and cell growth were newly identified as being activated during ovulation. Chromatin immunoprecipitation-sequencing revealed a genome-wide and rapid change in H3K4me3 during ovulation. Integration of transcriptome and H3K4me3 data identified many H3K4me3-associated genes that are involved in steroidogenesis, ovulation, COC expansion, angiogenesis, inflammatory response, immune system, ROS metabolism, lipid and glucose metabolism, autophagy, and regulation of cell size. The present results suggest that genome-wide changes in H3K4me3 after the LH surge are associated with rapid changes in gene expression in GCs, which enables GCs to acquire a lot of cellular functions within a short time that are required for ovulation and luteinization.


Granulosa Cells/metabolism , Histones/metabolism , Ovulation/physiology , Transcriptome , Animals , Chorionic Gonadotropin/pharmacology , Female , Gene Expression Profiling , Granulosa Cells/drug effects , Histone Code/drug effects , Histone Code/genetics , Luteinization/drug effects , Luteinization/genetics , Luteinization/metabolism , Luteinizing Hormone/metabolism , Mice , Mice, Inbred C57BL , Ovulation/genetics , Ovulation/metabolism , Protein Processing, Post-Translational/drug effects , Systems Integration , Transcriptome/drug effects
17.
J Obstet Gynaecol Res ; 47(6): 2215-2219, 2021 Jun.
Article En | MEDLINE | ID: mdl-33843094

Twin-twin transfusion syndrome (TTTS) complicates approximately 10% of monochorionic twin pregnancies and is associated with almost 90% mortality if left untreated. Fetoscopic laser photocoagulation (FLP) is the first-line therapy for TTTS, and an overall twin survival rate of 75% and at least one survival rate of 90% have been established. We report a case of TTTS complicated with bleeding from the uterine wall by inserting the procedure after FLP. The patient consequently underwent emergency caesarean section. The bleeding was uncontrollable due to atonic bleeding and emergency hysterectomy was performed. To detect the possibility of amniotic fluid embolism (AFE), biochemical blood samples demonstrated that there was no inflow of fetal ingredients in blood vessels of uterine tissue. There was no evidence of damage to any specific vessels by histopathological staining. These findings indicated that the cause of massive bleeding was unlikely to have been AFE. It was concluded that atonic bleeding was likely caused by uncontrollable hemorrhage from an injury lesion where an endoscope had been inserted.


Fetofetal Transfusion , Cesarean Section/adverse effects , Female , Fetofetal Transfusion/surgery , Fetoscopy , Gestational Age , Humans , Hysterectomy/adverse effects , Laser Coagulation , Lasers , Pregnancy , Pregnancy, Twin , Uterine Hemorrhage/etiology , Uterine Hemorrhage/surgery
18.
Mol Cell Endocrinol ; 520: 111085, 2021 01 15.
Article En | MEDLINE | ID: mdl-33232782

We previously reported that H3K27 acetylation (H3K27ac) increases throughout the genome during decidualization of human endometrial stromal cells (ESCs). However, its mechanisms have not been clarified. We also reported that C/EBPß acts as a pioneer factor initiating chromatin remodeling by increasing H3K27ac of IGFBP-1 and PRL promoters. Therefore, C/EBPß may be involved in the genome-wide increase of H3K27ac during decidualization. In this study, we investigated whether C/EBPß causes genome-wide H3K27ac modifications and regulates gene expressions during decidualization. cAMP was used to induce decidualization. Three types of cells (control cells, cAMP-treated cells, and cAMP-treated + C/EBPß-knockdowned cells by siRNA) were generated. Of 4190 genes that were upregulated by cAMP, C/EBPß knockdown inhibited these upregulation in 2239 genes (53.4%), indicating that they are under the regulation of C/EBPß. cAMP increased H3K27ac in 1272 of the 2239 genes. C/EBPß knockdown abolished the increase of H3K27ac in almost all genes (1263 genes, 99.3%), suggesting that C/EBPß can upregulate gene expression by increasing H3K27ac. To investigate how C/EBPß regulates H3K27ac throughout the genome, we tested the hypothesis that C/EBPß binds to its binding regions and recruits cofactors with histone acetyltransferase activities. To do this, we collated our ChIP-sequence data with public ChIP-sequence database of transcription factors, and found that p300 is the most likely cofactor that binds to the H3K27ac-increased-regions with C/EBPß. ChIP-qPCR of several genes confirmed that C/EBPß binds to the target regions, recruits p300, and increases H3K27ac. Our genome-wide analysis revealed that C/EBPß induces H3K27ac throughout the genome and upregulates gene expressions during decidualization by recruiting p300 to the promoters.


CCAAT-Enhancer-Binding Protein-beta/metabolism , Decidua/metabolism , Endometrium/cytology , Genome, Human , Histones/metabolism , Lysine/metabolism , Up-Regulation/genetics , Acetylation , Adult , Cyclic AMP/metabolism , Down-Regulation/genetics , E1A-Associated p300 Protein/metabolism , Female , Humans , Middle Aged , Reproducibility of Results , Stromal Cells/metabolism
19.
J Clin Endocrinol Metab ; 105(12)2020 12 01.
Article En | MEDLINE | ID: mdl-32877504

PURPOSE: To identify the upstream regulators (URs) involved in the onset and pathogenesis of ovarian endometrioma. METHODS: Recently, a method called Significance-based Modules Integrating the Transcriptome and Epigenome (SMITE) that uses transcriptome data in combination with publicly available data for identifying URs of cellular processes has been developed. Here, we used SMITE with transcriptome data from ovarian endometrioma stromal cells (ovESCs) and eutopic endometrium stromal cells (euESCs) in combination with publicly available gene regulatory network data. To confirm the URs identified by SMITE, we developed a Boolean network simulation to see if correcting aberrant expressions of the identified genes could restore the entire gene expression profile of ovESCs to a profile similar to that of euESCs. We then established euESCs overexpressing the identified gene and characterized them by cell function assays and transcriptome analysis. RESULTS: SMITE identified 12 potential URs in ovarian endometrioma that were confirmed by the Boolean simulation. One of the URs, HOXC8, was confirmed to be overexpressed in ovESCs. HOXC8 overexpression significantly enhanced cell proliferation, migration, adhesion, and fibrotic activities, and altered expression statuses of the genes involved in transforming growth factor (TGF)-ß signaling. HOXC8 overexpression also increased the expression levels of phosphorylated SMAD2/SMAD3. The increased adhesion and fibrosis activities by HOXC8 were significantly inhibited by E-616452, a selective inhibitor of TGF-ß receptor type I kinases. MAIN CONCLUSIONS: Integrated genomic approaches identified HOXC8 as an UR in ovarian endometrioma. The pathological features of ovarian endometrioma including cell proliferation, adhesion, and fibrosis were induced by HOXC8 and its subsequent activation of TGF-ß signaling.


Endometriosis/genetics , Homeodomain Proteins/physiology , Ovarian Diseases/genetics , Adult , Cell Movement/genetics , Cells, Cultured , Endometriosis/pathology , Epigenome , Female , Gene Expression Regulation , Gene Regulatory Networks , Genomics/methods , Homeodomain Proteins/genetics , Humans , Middle Aged , Ovarian Diseases/pathology , Systems Integration , Transcriptome
20.
Mol Neurobiol ; 57(12): 4891-4910, 2020 Dec.
Article En | MEDLINE | ID: mdl-32812201

Fatty acid binding protein 7 (FABP7) is an intracellular fatty acid chaperon that is highly expressed in astrocytes, oligodendrocyte-precursor cells, and malignant glioma. Previously, we reported that FABP7 regulates the response to extracellular stimuli by controlling the expression of caveolin-1, an important component of lipid raft. Here, we explored the detailed mechanisms underlying FABP7 regulation of caveolin-1 expression using primary cultured FABP7-KO astrocytes as a model of loss of function and NIH-3T3 cells as a model of gain of function. We discovered that FABP7 interacts with ATP-citrate lyase (ACLY) and is important for acetyl-CoA metabolism in the nucleus. This interaction leads to epigenetic regulation of several genes, including caveolin-1. Our novel findings suggest that FABP7-ACLY modulation of nuclear acetyl-CoA has more influence on histone acetylation than cytoplasmic acetyl-CoA. The changes to histone structure may modify caveolae-related cell activity in astrocytes and tumors, including malignant glioma.


ATP Citrate (pro-S)-Lyase/metabolism , Acetyl Coenzyme A/metabolism , Astrocytes/metabolism , Cell Nucleus/metabolism , Fatty Acid-Binding Protein 7/metabolism , Acetylation , Animals , Base Sequence , Caveolin 1/genetics , Caveolin 1/metabolism , HEK293 Cells , Histones/metabolism , Humans , Lysine/metabolism , Mice , Mice, Knockout , Models, Biological , NIH 3T3 Cells , Promoter Regions, Genetic/genetics , Protein Binding
...